Ba²⁺ Uptake and the Inhibition by Ba²⁺ of K⁺ Flux into Rat Liver Mitochondria

Joyce Johnson Diwan

Biology Department, Rensselaer Polytechnic Institute, Troy, New York 12180-3590

Summary, Rapid uptake of Ba²⁺ by respiring rat liver mitochondria is accompanied by a transient stimulation of respiration. Following accumulation of Ba²⁺, e.g. at a concentration of 120 nmol per mg protein, the mitochondria exhibit reduced rates of state 3 and uncoupler-stimulated respiration. ADP-stimulated respiration is inhibited at a lower concentration of Ba2+ than is required to affect uncoupler-stimulated respiration, suggesting a distinct effect of Ba2+ on mechanisms involved in synthesis of ATP. Ba^{2+} , which has an ionic radius similar to that of K^+ , inhibits unidirectional K⁺ flux into respiring rat liver mitochondria. This effect on K⁺ influx is observable at concentrations of Ba²⁺, e.g. 23 to 37 nmol per mg protein, which cause no significant change in state 4 or uncoupler-stimulated respiration. The accumulated Ba²⁺ decreases the measured V_{max} of K⁺ influx, while having little effect on the apparent K_m for K⁺. The inhibition of K^+ influx by Ba^{2+} is seen in the presence and absence of mersalyl, an activator of K+ influx. In contrast, under the conditions studied, Ba2+ has no apparent effect on the rate of unidirectional K⁺ efflux. These data are consistent with the idea that K⁺ may enter and leave mitochondria via separate mechanisms.

Key Words $Ba^{2+} \cdot K^+$ flux \cdot mitochondria \cdot transport

Introduction

Ba²⁺, which has a crystal ionic radius essentially the same as that of K⁺, inhibits K⁺ transport through various plasma membrane K⁺ channels. These include the delayed rectifier, the inward (anomalous) rectifier, and the Ca²⁺-dependent K⁺ channels of nerve and muscle membranes (for a review *see* Latorre & Miller, 1983), as well as the apical K⁺ channels of frog skin (Zieske & Van Driessche, 1983). Ba²⁺ appears to bind deep within K⁺ channels of axonal membranes, perhaps at the "selectivity filter," proposed to be a negatively charged region of diameter comparable to that of the unhydrated K⁺ ion (Armstrong & Taylor, 1980; Eaton & Brodwick, 1980; Latorre & Miller, 1983).

Unidirectional K^+ flux into respiring mitochondria is mediated by a mechanism which is saturable, pH-dependent, and competitively inhibited by the K⁺ analog Tl⁺ (Diwan & Lehrer, 1977, 1978; Jung, Chavez & Brierley, 1977). The rate of K⁺ entry is increased by treatment with various thiol reactive reagents including mercurials (Gamble, 1957; Brierley, Knight & Settlemire, 1968; Diwan, Markoff & Lehrer, 1977; Jung et al., 1977), Cd²⁺ (Rasheed, Diwan & Sanadi, 1984), dibutylchloromethyltin chloride (Diwan, DeLucia & Rose, 1983) and phenylarsine oxide (Sanadi, Hughes & Joshi, 1981; Srivastava & Diwan, 1983).

It has been postulated that K^+ may enter and leave mitochondria via separate mechanisms. A K⁺ uniporter is proposed to mediate electrophoretic K^+ entry while a K⁺/H⁺ exchanger is proposed to catalvze K⁺ efflux (Mitchell & Movle, 1969; Jung et al., 1977). The measured pH dependence of unidirectional and net K⁺ efflux rates (Chavez, Jung & Brierley, 1977; Diwan & Lehrer, 1978; Diwan, 1981; Bernardi & Azzone, 1983) does not support a passive K^+/H^+ exchange mechanism. However, such a model does provide an explanation, consistent with the chemiosmotic theory (Mitchell, 1961), of observations (Diwan & Tedeschi, 1975; Diwan et al., 1979; Skulskii, Saris & Glasunov, 1983) that both influx and efflux of K⁺ and other cations are respiration dependent. Treatments which cause depletion of endogenous Mg²⁺ cause an increased K⁺ permeability, which has been attributed to release of regulation by Mg^{2+} of the proposed K^+/H^+ exchanger (Azzone, Bortolotto & Zanotti, 1978; Garlid, 1980; Jung et al., 1981; Nakashima, Dordick & Garlid, 1982; Bernardi & Azzone, 1983). An 82,000 dalton mitochondrial protein, identified on the basis of the observed Mg²⁺ dependence of its reactivity with [¹⁴C]dicyclohexylcarbodiimide, has been proposed to have a role in K^+/H^+ exchange (Martin, Beavis & Garlid, 1984).

Oxidation of cytochrome *b* upon addition of Ba^{2+} to respiring mitochondria has been found to correlate with uptake of Ba^{2+} detected by means of

166

Fig. 1. Effect of Ba²⁺ on mitochondrial respiration. For samples 1 & 2 the medium included 4 mM KH₂PO₄; while for samples 3-5 4 mM KCl was substituted. The mitochondrial protein concentration was 2.48 mg per ml. Additions: *a*, 0.3 mM Tris ADP; *b*, Ba²⁺ at 150 μ M in samples 2 & 4 or 300 μ M in sample 5; *c*, 75 nM carbonylcyanide *m*-chlorophenylhydrazone (CCP)

the indicator dye murexide (Vainio, Mela & Chance, 1970). K⁺ at 20 mM was found to block the effect of Ba^{2+} on cytochrome *b* oxidation, while having little effect on the interaction of Ca^{2+} with mitochondria (Vainio et al., 1970). It was suggested that the inhibitory effect of K⁺ might be attributable to interference with surface binding of Ba^{2+} (Vainio et al., 1970; Saris & Åkerman, 1980).

Materials and Methods

Rat liver mitochondria were isolated in 0.25 M sucrose by standard procedures. Mitochondrial protein was assayed by the biuret method, using bovine serum albumin as standard (Layne, 1957). Respiration was monitored by means of a membrane-covered oxygen electrode connected to a potentiometric recorder. Mitochondria were incubated at 20°C, in a total volume of 3 ml, in medium containing (in mM): 200 sucrose, 3 succinic acid, 20 Tris, and 4 KCl or 4 KH₂PO₄, with the pH adjusted to 7.5 with HCl.

For the K⁺ flux measurements, mitochondria (4 to 6 mg protein per ml) were incubated at 20°C in medium containing 200 mм sucrose, succinic acid (3 mм in experiments of Figs. 1 and 5; 7.5 mM in expts. of Fig. 2 & Table 2), 15 mM Tris, K⁺ (added as KCl and as carrier with the ⁴²K; see figure and table legends), ${}^{3}\text{H}_{2}\text{O}$ (approx. 5 μ Ci/ml), ${}^{42}\text{K}$ (approx. 0.4 μ Ci/ml), and in some experiments [14C]sucrose (approx. 0.8 µCi/ml), with the pH adjusted to 7.5 with HCl. At timed intervals mitochondrial samples were separated from incubation media by rapid centrifugation through silicone (Harris & VanDam, 1968). 42K was assayed by liquid scintillation counting of the Cerenkov radiation in aqueous dilutions of mitochondrial and supernatant samples, and the counts were corrected for decay. Following decay of the ⁴²K, total K⁺ levels were assayed by atomic absorption spectroscopy, and ³H and ¹⁴C were counted using a standard liquid scintillation cocktail. Fluid compartments and mitochondrial contents of total and labeled K⁺ were calculated as in earlier studies (Diwan et al., 1979). Unidirectional K⁺ influx rates were determined from the change in labeled K⁺ content between samples taken after 0.5

and 7 min of incubation. Values of net K^+ flux were determined from the change in total K^- during the same time period. Unidirectional K^+ efflux rates represent the difference between measured influx and net flux rates.

Measurements of uptake of ¹³³Ba were carried out using similar techniques, with an equivalent incubation medium except that ⁴²K and [¹⁴C]sucrose were omitted, and the medium contained 150 μ m BaCl₂ with approx. 0.25 μ Ci/ml ¹³³Ba. The succinate concentration was 3.2 mM.

Radioisotopes were obtained from New England Nuclear. Silicone (SF1230) was a gift from the General Electric Co. $BaCl_2$ was obtained from Aldrich Chemical Co., and all other chemicals were from Sigma Chemical Co. or Fisher Scientific Co.

Results

MITOCHONDRIAL RESPIRATION AND Ba²⁺ Uptake

When Ba^{2+} is added to mitochondria respiring in state 4, there is a brief stimulation of respiration followed by a return to essentially the initial state 4 rate, as shown in Fig. 1 and Table 1. The respiratory burst is similar to that which accompanies Ca^{2+} uptake by mitochondria (Saris & Åkerman, 1980). Under the conditions of the experiment depicted in Fig. 1, the duration of the respiratory stimulation is about 1 min or less. The respiratory burst is observed both in the presence and absence of phosphate, although the magnitude of the stimulated rate is greater in media containing phosphate.

That Ba²⁺ is rapidly taken up by respiring mitochondria is directly confirmed, using the radioisotope ¹³³Ba, in the experiment depicted in Fig. 2. Under the conditions of the experiment in Fig. 2 (medium similar to that used for the K⁺ flux measurements to be described below, including 4 mm K⁺), uptake of Ba^{2+} is about 88% complete within 1 min of incubation. Steady state is reached between the 1- and 2-min samples. At the steady state, the average concentration of labeled Ba2+ in the medium is decreased from the initial 150 μ M to 33 μ M. As shown in Fig. 2, inhibition of respiration by antimycin A slows the uptake of Ba^{2+} . However, by 7 min of incubation the amount accumulated approaches that of controls. The rate of uptake of Ba²⁺ also decreases with increasing K⁺ concentration in the medium. For example, in the same experiment as that of Fig. 2, the average initial Ba²⁺ uptake (0.33 to 0.40 min) was 12.4 nmol per mg protein in medium with 1 mM K⁺ compared to 7.8 nmol per mg protein with 14 mм K⁺. However, even in the presence of 14 mM K⁺, Ba²⁺ uptake was essentially at the steady-state level within 2 min.

The data summarized in Table 1A indicate that when ADP is added following completion of the Ba^{2+} -induced respiratory burst, the state 3 respira-

Table 1. Effect of Ba²⁺ on mitochondrial respiration^a

	mg/ml	μм Ва ²⁺	nmol/mg Ba²+	nmol O ₂ /mg protein (min)		
	protein			Initial rate	Final rate after Ba ²⁺	Rate after ADP or CCP
A	1.24			7.0		36.1
				7.6		40.6
	1.24	150	121	6.7	6.9	15.8
				6.9	7.2	16.2
	2.48		_	8.5		41.4
				7.8		37.7
	2.48	150	60.5	6.8	6.6	24.0
				7.9	7.4	26.6
	2.48	300	121	7.7	7.4	17.5
				7.7	7.2	16.3
В	1.24			6.3		23.2
				4.8		20.8
	1.24	150	121	6.5	6.1	$15.9 \rightarrow 5.0$
				6.6	6.6	$17.1 \rightarrow 7.8$
	2.48		_	6.7		18.6
				6.4		18.5
	2.48	150	60.5	6.6	6.1	18.4
				6.7	6.0	18.6
	2.48	300	121	6.4	6.4	$8.1 \rightarrow 5.8$
				6.7	6.5	$10.3 \rightarrow 6.0$

^a The medium in A included 4 mM KH₂PO₄; and 0.3 mM Tris ADP was added to obtain the state 3 rate. The medium in B substituted 4 mM KCl; and 75 nM carbonyl cyanide *m*-chlorophenylhydrazone (CCP) was added in place of the ADP. BaCl₂ concentrations are given as μ M and as nmol Ba²⁺ per mg mitochondrial protein. Respiration rates given are initial rates (before addition of BaCl₂), rates obtained after cessation of the respiratory burst induced by Ba²⁺, and rates observed following the subsequent addition of ADP or CCP. With 121 nmol of Ba²⁺ per mg protein, the respiratory rate following addition of CCP decreased rapidly following an initial stimulation, so approximate values of initial and final rates are given. The data summarize results from the same experiment as that of Fig. 1.

tion rate is less than that of control mitochondria. If the concentration of mitochondria is varied, the extent of inhibition of state 3 respiration is found to correlate with the nanomoles of Ba^{2+} added per mg protein, rather than the μM Ba^{2+} concentration. This is not surprising since the results suggest that a major part of the Ba^{2+} added is within the mitochondria when the ADP is added.

For the samples in Table 1B, phosphate is omitted from the medium and the effect of Ba^{2+} on uncoupler-stimulated respiration is examined. The concentration of Ba^{2+} required to inhibit uncouplerstimulated respiration is higher than that found to significantly affect ADP-stimulated respiration. At about 60 nmol Ba^{2+} per mg protein there is consistently no effect on uncoupler-stimulated respiration, while the increment of ADP-stimulated respi-

Fig. 2. Time course of ¹³³Ba uptake. The labeled Ba²⁺ taken up in units of nmol per mg protein is plotted against incubation time in minutes. The values are not corrected for contaminating external ¹³³Ba because an upper limit based on the product of the mitochondrial water space and the measured concentration of ¹³³Ba remaining in the medium was judged to be negligible for all samples (less than 0.25 nmol/mg). The medium included 4 mM KCl. Values are means of three determinations, with standard deviations shown except where less than the diameter of the symbol. Symbols: \bigcirc , control samples; $\textcircled{\bullet}$, the medium included antimycin A at 33 ng per mg protein

Fig. 3. Effect of Ba²⁺ on the time course of ⁴²K uptake. The mitochondrial content of labeled K⁺, in units of nanomoles per mg protein, is plotted against the incubation time in minutes. The values of labeled K⁺ are corrected for contaminating external K⁺, estimated from the product of the measured [¹⁴C]sucrose distribution space and the supernatant K⁺ concentration (3.2 mM). Symbols: •, controls; •, the medium included 150 μ M BaCl₂ (37 nmol Ba²⁺ per mg protein)

ration is reduced, e.g. by 43% in the experiment of Table 1.

K⁺ Influx

The time course of 42 K uptake by respiring mitochondria is shown in Fig. 3. During the 7-min incu-

Fig. 4. Effect of varied Ba²⁺ concentration on K⁺ influx. The rate of K⁺ influx, in units of nmol K⁺ per mg protein per min, is plotted against the concentration of Ba²⁺ included in the medium, in units of nmol per mg protein and μ M. The measured K⁺ concentration in the medium was 4.3 mM

bations the ⁴²K uptake is approximately linear with respect to time and represents a small amount of turnover of the measured endogenous K⁺ content of approximately 100 nmol per mg protein, in agreement with earlier studies (Diwan & Lehrer, 1978). The unidirectional K⁺ influx rate, corresponding to the slope of the uptake curve, is reduced in the presence of 150 μ M Ba²⁺ (37 nmol/mg protein). If one extrapolates the ⁴²K uptake to zero time, it is apparent that Ba²⁺ also decreases the initial rapid \mathbf{K}^{+} binding. This component of ⁴²K uptake, which is not respiration dependent, is assumed to be attributable to surface adsorption (Diwan & Lehrer, 1978). Ba²⁺ consistently causes less inhibition of K⁺ adsorption than of the progressive K⁺ influx. For example, for the data depicted in Fig. 3, the average K⁺ influx rate is found to be inhibited 61% by Ba^{2+} , while the average extrapolated zero time K⁺ binding is inhibited 17%.

The dependence on Ba²⁺ concentration of the effect of Ba^{2+} on K^+ influx is depicted in Fig. 4. The inhibition of K⁺ influx increases as the Ba²⁺ concentration is increased, with 78% inhibition being obtained at the highest Ba²⁺ concentration tested (450 μ M or 69 nmol/mg protein). A comparison of percent inhibition values from different experiments in which the concentration of mitochondria varied suggests that, as with effects on respiration, the extent of inhibition by Ba²⁺ varies with the nanomoles of Ba^{2+} added per mg protein, at constant $\mu M Ba^{2+}$ concentration. K⁺ influx is a slow process, and although respiration dependent (Diwan & Tedeschi, 1975), is not accompanied by a measurable stimulation of respiration. Results such as those depicted in Table 1 show little effect of Ba²⁺ on state 4 respiration. Nevertheless, given the observed effect on un-

Fig. 5. Effect of Ba²⁺ on the dependence of K⁺ influx on external K⁺. The measured K⁺ concentration of the medium varied from 1.6 to 13.8 mM. In A (Eadie-Hofstee plot) the K⁻ influx rate, in units of nmol K⁺ per mg protein per min, is plotted against the K⁺ influx rate divided by the external mM K⁺ concentration, in units of μ l/mg protein (min). In B (Lineweaver-Burk plot) the reciprocal of the K⁺ influx rate, in units of mg protein (min) per nmol K⁺, is plotted against the reciprocal of the external K⁻ concentration, in units of (mM)⁻¹. The lines drawn are calculated from the data by the method of least squares. Symbols: \bullet , control samples; \blacktriangle , the medium included 150 μ M BaCl₂ (35 nmol Ba²⁺ per mg protein)

coupler-stimulated respiration, the possibility must be considered that at high concentrations of Ba²⁺ inhibition of K⁺ influx may be due to an effect on respiration rather than to a direct effect on the K⁺ transport mechanism. For the other studies of K⁺ influx, effects of Ba²⁺ have been tested at 150 μ M. At the concentration of mitochondria utilized for the K⁺ flux measurements, which is necessarily greater than that utilized for respiration measurements, 150 μ M corresponds to 23 to 37 nmol Ba²⁺ per mg protein. In this concentration range, the data indicate that Ba²⁺ should have little effect on respiration, except during the uptake of Ba²⁺, which would be complete early in the 0.5- to 7-min time course of the ⁴²K influx measurements.

The dependence of K^+ influx on the K^+ concentration in the medium is examined in Fig. 5. In agreement with earlier studies, Lineweaver-Burk plots of the reciprocal of the K^+ influx rate vs. the reciprocal of the external K^+ concentration are linear (Diwan & Lehrer, 1978; Diwan, 1981), although

J.J. Diwan: Mitochondrial K⁺ Flux Inhibited by Ba²⁺

Table 2. Apparent kinetic constants^a

	тм К ⁻ <i>К</i> _m		nmol K ⁺ /mg prot (min) V _{max}	
	L-B	E-H	L-B	E-H
Control + Ba ²⁺	3.9 ± 0.8 4.4 ± 1.1	3.9 ± 1.1 4.5 ± 1.0	$\begin{array}{c} 2.8 \pm 0.3 \\ 1.5 \pm 0.1 \end{array}$	2.9 ± 0.5 1.5 ± 0.1

^a Values are means of kinetic constants calculated from leastsquares fits of data from the experiment of Fig. 5 and two other similar experiments, \pm standard deviations. L-B refers to the Lineweaver-Burk and E-H to the Eadie-Hofstee transformations of the Michaelis Menton equation.

a slight nonlinearity of the Eadie-Hofstee plots is sometimes observed. Apparent kinetic constants calculated from three similar experiments are summarized in Table 2. The data consistently show an essentially noncompetitive pattern of inhibition. The calculated V_{max} decreases in the presence of Ba²⁺, while the apparent K_m for K⁺ changes very little.

Table 3 examines the effect of the Ba^{2+} on K^+ influx activated by mersalyl. An enhanced rate of K^+ influx is observed in the presence of the mercurial, consistent with earlier studies (Diwan et al., 1977; Jung et al., 1977). The activated K^+ influx remains sensitive to Ba^{2+} . In the experiment of Table 3, 42% inhibition by Ba^{2+} of K^+ influx in the presence of mersalyl is observed, compared to 50% inhibition of control influx rates. In another comparable experiment, 42% inhibition by Ba^{2+} was observed in the presence of mersalyl compared to 44% inhibition in the absence of mersalyl.

Table 3 also lists unidirectional K^+ efflux rates. The results of this and other experiments show that Ba^{2+} causes no inhibition of K^+ efflux.

Discussion and Conclusions

The results have directly confirmed an earlier report of respiration-dependent uptake of Ba^{2+} by mitochondria (Vainio et al., 1970). An observed slowing of the Ba^{2+} uptake rate in the presence of K^+ is consistent with the finding that K^+ blocks the stimulation by Ba^{2+} of cytochrome *b* oxidation (Vainio et al., 1970). The current studies show that Ba^{2+} , at relatively high concentrations, inhibits state 3 respiration and uncoupler-stimulated respiration. The finding that ADP stimulation of respiration is inhibited at a concentration of Ba^{2+} which fails to affect uncoupler-stimulated respiration suggests an interaction of Ba^{2+} with the ATP synthase complex, or with the adenine nucleotide translocase, which is

Table 3. Effect of Ba^{2+} and mersalyl on K^+ flux^a

Additions	nmol K ⁺ /mg protein (min)			
	K ⁺ influx	K ⁺ efflux		
none	1.67 ± 0.06	1.3 ± 0.4		
Ba ²⁺	0.84 ± 0.16	1.4 ± 0.5		
mersalyl	2.78 ± 0.05	1.5 ± 0.3		
Ba ²⁺ + mersalyl	1.62 ± 0.10	1.6 ± 0.4		

^a Ba²⁺ and mersalyl when present were each included in the medium at 150 μ M or 27.5 nmol per mg protein. Values are means of three determinations \pm standard deviations.

distinct from its interaction with the respiratory chain.

 Ba^{2+} inhibits K^+ flux into respiring mitochondria. This effect is observable at Ba^{2+} concentrations which do not significantly impair mitochondrial respiration under similar conditions. The finding that K^+ adsorption is less affected by Ba^{2+} than is K^+ influx suggests that the effect of Ba^{2+} on K^+ influx is probably not attributable to interference with surface binding.

The kinetic studies suggest an essentially noncompetitive pattern of inhibition of K⁺ influx by Ba²⁺. Purely competitive inhibition might have been expected considering the similarity of size of the Ba²⁺ and K⁺ ions and the evidence for competitive interactions in other transport systems (Latorre & Miller, 1983). However, it should be noted that the ¹³³Ba uptake studies, respiratory measurements, and the dependence on protein concentration of Ba^{2+} effects, indicate that the added Ba^{2+} is largely taken up by the mitochondria early in the time period of the ⁴²K uptake measurements. In the absence of an ability to measure isotope fluxes on a much faster time scale, the ¹³³Ba uptake measurements do not permit distinguishing instantaneous surface binding from respiration-linked Ba2+ influx. Nevertheless the similarity of the respiratory cycles observed with Ba²⁺ and Ca²⁺ suggests that a significant portion of the Ba²⁺ taken up does enter the matrix compartment. Thus the ⁴²K flux measurements are examining effects of a largely internalized and concentrated inhibitor on reaction of external K^+ with the K^+ transport mechanism. Furthermore, although in some sense a substrate analog. the divalent Ba²⁺ may not be a good substrate capable of reversibly traversing the mitochondrial K^+ channel or carrier site. In fact the reported sensitivity of Ba²⁺ uptake to Pr³⁺, an inhibitor of the Ca²⁺ transport mechanism (Vainio et al., 1970), suggests that Ba²⁺ may enter the mitochondria via the Ca²⁺ transporter. The mitochondrial K⁺ transport mechanism differs from the Ca^{2+} transporter in kinetic characteristics and inhibitor sensitivity (Diwan & Lehrer, 1978; Saris & Åkerman, 1980).

The mechanism of activation of K^+ influx by mersalyl remains unclear. It was earlier proposed that mercurials may enhance K⁺ permeability by causing discharge of endogenous Mg²⁺ (Bogucka & Wojtczak, 1979). However, this hypothesis has not been supported by measurements of mitochondrial Mg²⁺ (Diwan, Aronson & Gonsalves, 1980) or by the observed sensitivity to mersalyl of K⁺ flux into divalent cation-depleted mitochondria (Jung et al., 1981). It has been shown that mersalyl increases the V_{max} of respiration-dependent K⁺ influx without altering the apparent K_m for K⁺ (Diwan et al., 1977). It has been suggested that mersalyl may open up an alternative pathway for electrophoretic K⁺ flux (Jung et al., 1981). The present data indicate that the K⁺ translocation mechanism activated by mersalvl exhibits a sensitivity to Ba²⁺ similar to that of the native K^+ influx mechanism. In contrast, the mechanism mediating K⁺ efflux appears to be insensitive to Ba²⁺. This finding is consistent with the proposal (Mitchell & Moyle, 1969; Jung et al., 1977) that K⁺ may enter and leave mitochondria via separate mechanisms.

The technical assistance of Ms. Veena Shah and the technical advice of Professor Ivor Preiss are gratefully acknowledged. This work was supported by NIH grant GM-20726.

References

- Armstrong, C.M., Taylor, S.R. 1980. Interaction of barium ions with potassium channels in squid giant axons. *Biophys. J.* 30:473–488
- Azzone, G.F., Bortolotto, F., Zanotti, A. 1978. Induction of electroneutral exchanges of H⁺ with K⁺ in rat liver mitochondria. *FEBS Lett.* 96:135–140
- Bernardi, P., Azzone, G.F. 1983. Electroneutral H⁺/K⁺ exchange in liver mitochondria. *Biochim. Biophys. Acta* 724:212-223
- Bogucka, K., Wojtczak, L. 1979. On the mechanism of mercurial-induced permeability of the mitochondrial membrane to K⁺, FEBS Lett. 100:301-304
- Brierley, G.P., Knight, V.A., Settlemire, C.T. 1968. Ion transport by heart mitochondria. XII. Activation of monovalent cation uptake by sulfhydryl group reagents. J. Biol. Chem. 243:5035-5043
- Chavez, E., Jung, D.W., Brierley, G.P. 1977. Energy-dependent exchange of K⁺ in heart mitochondria. K⁺ efflux. Arch. Biochem. Biophys. 183:460-470
- Diwan, J.J. 1981. Dependence of mitochondrial K⁺ flux on pH. Biochem. Soc. Trans. 9:153-154
- Diwan, J.J., Aronson, D., Gonsalves, N.O. 1980. Effect of mersalyl on mitochondrial K⁺ flux. J. Bioenerg. Biomembr. 12:205-212

- Diwan, J.J., Dazé, M., Richardson, R., Aronson, D. 1979. Kinetics of Mg²⁺ flux into rat liver mitochondria. *Biochemistry* 18:2590-2595
- Diwan, J.J., DeLucia, A., Rose, P.E. 1983. Interacting effects of dibutylchloromethyltin chloride, 2,3-dimercaptopropanol, and other reagents on mitochondrial respiration and K⁻ flux. J. Bioenerg. Biomembr. 15:277–288
- Diwan, J.J., Lehrer, P.H. 1977. Inhibition of mitochondrial potassium ion flux by thallous ions. *Biochem. Soc. Trans.* 5:203-205
- Diwan, J.J., Lehrer, P.H. 1978. Effects on mitochondrial K flux of pH, K concentration, and N-ethyl maleimide. *Membr. Biochem.* 1:43-60
- Diwan, J.J., Markoff, M., Lehrer, P.H. 1977. Comparison of effects of mersalyl & N-ethyl maleimide on mitochondrial K⁺ flux. Indian J. Biochem. Biophys. 14:342–346
- Diwan, J.J., Tedeschi, H. 1975. K⁺ fluxes and the mitochondrial membrane potential. FEBS Lett. 60:176–179
- Eaton, D.C., Brodwick, M.S. 1980. Effects of barium on the potassium conductance of squid axon. J. Gen. Physiol. 75:727-750
- Gamble, J.L. 1957. Potassium binding and oxidative phosphorylation in mitochondria and mitochondrial fragments. *J. Biol. Chem.* **228**:955–971
- Garlid, K.D. 1980. On the mechanism of regulation of the mitochondrial K⁺/H⁺ exchanger. J. Biol. Chem. 255:11273-11279
- Harris, E.J., VanDam, K. 1968. Changes of total water and sucrose space accompanying induced ion uptake or phosphate swelling of rat liver mitochondria. *Biochem. J.* 106:759-766
- Jung, D.W., Chavez, E., Brierley, G.P. 1977. Energy-dependent exchange of K⁺ in heart mitochondria. K⁺ influx. Arch. Biochem. Biophys. 183:452-459
- Jung, D.W., Shi, G.-Y., Brierley, G.P. 1981. Induction of passive monovalent cation-exchange activity in heart mitochondria by depletion of endogenous divalent cations. Arch. Biochem. Biophys. 209:356–361
- Latorre, R., Miller, C. 1983. Conduction and selectivity in potassium channels. J. Membrane Biol. 71:11-30
- Layne, E. 1957. Spectrophotometric and turbidometric methods for measuring proteins. *Methods Enzymol.* **3**:447--454
- Martin, W.H., Beavis, A.D., Garlid, K.D. 1984. Identification of an 82,000-dalton protein responsible for K⁺/H⁺ antiport in rat liver mitochondria. J. Biol. Chem. 259:2062–2065
- Mitchell, P. 1961. Coupling of phosphorylation to electron and hydrogen transfer by a chemiosmotic mechanism. *Nature* (*London*) **191**:144–148
- Mitchell, P., Moyle, J. 1969. Translocation of some anions, cations and acids in rat liver mitochondria. Eur J. Biochem. 9:149-155
- Nakashima, R.A., Dordick, R.S., Garlid, K.D. 1982. On the relative roles of Ca²⁺ and Mg²⁺ in regulating the endogenous K⁺/H⁺ exchanger of rat liver mitochondria. J. Biol. Chem. 257:12540-12545
- Rasheed, B.K.A., Diwan, J.J., Sanadi, R. 1984. Activation of potassium ion transport in mitochondria by cadmium ion. *Eur. J. Biochem.* 144:643–647
- Sanadi, D.R., Hughes, J. B., Joshi, S. 1981. Activation of potassium-dependent H⁺ efflux from mitochondria by cadmium and phenylarsine oxide. J. Bioenerg. Biomembr. 13:425-431
- Saris, N.-E., Åkerman, K.E.O. 1980. Uptake and release of bivalent cations in mitochondria. *In:* Current Topics in Bioenergetics. D.R. Sanadi, editor. Vol. 10, pp. 103–179. Academic, New York

J.J. Diwan: Mitochondrial K⁺ Flux Inhibited by Ba²⁺

- Skulskii, I.A., Saris, N.-E.L., Glasunov, V.V. 1983. The effect of the energy state of mitochondria on the kinetics of unidirectional cation fluxes. Arch. Biochem. Biophys. 226:337– 346
- Srivastava, J., Diwan, J.J. 1983. Effect of phenylarsine oxide on mitochondrial K⁺ flux. *Biophys. J.* **41**:139a
- Vainio, H., Mela, L., Chance, B. 1970. Energy dependent bi-

valent cation translocation in rat liver mitochondria. Eur. J. Biochem. 12:387-391

- Zeiske, W., Van Driessche, W. 1983. The interaction of "K⁺like" cations with the apical K⁺ channel in frog skin. J. Membrane Biol. **76:**57-72
- Received 9 June 1984; revised 15 October 1984